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2 HOMEWORK ASSIGNMENTS



CHAPTER

ONE

AMCS 394E: FEM

In this repository you can find my homework for Contemporary Topics in Computational Science: Computing with the
Finite Element Method. The course is hosted from AMCS 394E: Computing with the Finite Element Method Git.

The folder /src/ contains the actual functions wherase the homework functions contain the homework assignments and
the scripts that are used to run tha problems.

𝑝ℎ𝑦𝑠𝑖𝑐𝑠 * 𝑎𝑟𝑔𝑚𝑖𝑛

1.1 Homework 1

Topic
Homework regarding the first week. The goal is to work with basic numerical approximation of PDE’s’ and functions.

Bram Lagerweij 18 Feb 2021

Table of Contents

• 1 Method of Lines

– 1.1 Advective Diffusive PDE

– 1.2 Advective PDE

• 2 Approximation of functions

– 2.1 Global Approximations

– 2.2 Local Approximations

3
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1.1.1 1 Method of Lines

Consider the one-dimensional advection diffusion equation:

𝑢𝑡 + 𝑐𝑢𝑥 − 𝜇𝑢𝑥𝑥 = 0 ∀𝑥 ∈ Ω = [0, 1] & 𝑡 > 0

where 𝜇 > 0 is the diffusion coefficient and 𝑐 the wave speed. Consider periodic boundary conditions and the following
initial condition:

𝑢(𝑥, 0) = sin(2𝜋𝑥)

What do we expect the exact solution to do? Due to the advective part, the initial condition travels at constant speed to
the right. At the same time, due to the diffusive term, the initial condition is dissipated at a rate that depends on 𝜇.

Consider the following discretization. Use second-order central finite differences to approximate 𝑢𝑥 and 𝑢𝑥𝑥. Use
forward and backward Euler to obtain full discretization (write down the schemes). Consider a fixed mesh with of ∆𝑥.

1.1 Advective Diffusive PDE

Consider a final time of 𝑡 = 1, 𝑐 = 1 and 𝜇 = 0.01. For each full discretization proceed as follows:

1. Experiment using the following time step sizes: ∆𝑡 = 104, 103 and 102.

2. How do the explicit and implicit methods behave for these time steps?

There is a so called Courant-Friedrichs-Lewy condition that formulates a condition of stability on the model:

𝐶 =
𝑐∆𝑡

∆𝑥
≤ 𝐶max

Where 𝐶max is a constant, which for explicit schemes, such as forward Euler, is around 1. If the condition is violated
the method becomes unstable, that does not mean that the results are unstable from the first iteration.

Fig. 1.1: : The forward difference scheme is unstable for 𝑑𝑡 = 10−2, the backward scheme behaves as expected. Click
here for an animated version.

Fig. 1.2: : With a timestep of 𝑑𝑡 = 10−3 both the forward and backward Euler scheme are stable. Click here for an
animated version.

Fig. 1.3: : As expected with a timestep of 𝑑𝑡 = 10−4 both time integrations behave stable. Click here for an animated
version.

1 r"""
2 Solving an Advective and Diffusive PDE with finite differences.
3

4 The PDE described by
5

6 .. math::
7 u_{t} + u_{x} = \mu u_{xx} \quad \forall x \in\Omega = [0, 1] \;\; \& \;\; t > 0
8

9 With a periodic boundary condition. It will show a combination of diffusive
10 and advective behaviour. The approximation used is a second order finite

(continues on next page)
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_static/AdDiff2.webm
_static/AdDiff2.webm
_static/AdDiff3.webm
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(continued from previous page)

11 difference scheme in space with both a forward and backward Euler method of
12 lines implementation to handle the time direction.
13

14 The goal is to implement the code in python and not rely on existing solvers.
15

16 Bram Lagerweij
17 COHMAS Mechanical Engineering KAUST
18 2021
19 """
20

21 # Importing External modules
22 import sys
23 import matplotlib.pyplot as plt
24 import numpy as np
25

26 # Importing my own scripts
27 sys.path.insert(1, '../src')
28 from finitedifference import advectivediffusive
29 from solvers import forwardEuler, backwardEuler
30

31

32 if __name__ == '__main__':
33 # Define properties.
34 dx = 1e-2
35 dt = 1e-4
36 t_end = 1
37 mu = 0.01 # Diffusive term
38 c = 1 # Advective term
39

40 # Define discrete ranges.
41 dof = int(1 / dx) + 1
42 x, dx = np.linspace(0, 1, dof, retstep=True)
43 t = np.arange(0, t_end + dt, step=dt)
44

45 # Prepare solver.
46 u0 = np.sin(2 * np.pi * x) # Initial condition
47

48 # Solve the problem using method of lines.
49 u_forw = forwardEuler(advectivediffusive, u0, dt, t_end, args=(dof, dx, mu, c))
50 u_back = backwardEuler(advectivediffusive, u0, dt, t_end, args=(dof, dx, mu, c))
51

52 # Plotting the results.
53 plt.xlim(0, 1)
54 plt.xlim(0, 1)
55 plt.ylim(-1, 1)
56 plt.xlabel('$x$ location')
57 plt.ylabel('$u(x)$')
58 plt.annotate('time t={}'.format(t[-1]), xy=(0.5, 0.9), ha='center')
59 plt.tight_layout()
60

61 plt.plot(x, u_forw, label='forward')
62 plt.plot(x, u_back, label='backward')

(continues on next page)
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(continued from previous page)

63

64 plt.legend()
65 plt.show()

1.2 Advective PDE

Consider 𝜇 = 0 and 𝑐 = 2 and solve the PDE using the explicit and the implicit methods. Use ∆𝑡 = 104 and solve the
problem for the following final times 𝑡 = 1, 5, 10, 15 and 20. Comment on the behaviour of each full discretization
as the final time increases.

Fig. 1.4: : Even with small time steps this type of hyperbolic like equation can become unstable when using a forward
Euler method. Click here for an animated version.

Due to the region of convergence of the forward Euler method such a hyperbolic PDE with no dissipation will always
be unstable. In the animation the instabilities become only clear after 14 seconds. Nevertheless, even at 𝑡 = 1 the
method should be considered unstable. Similarly the backward Euler is inaccurate as well, it is too dissipative, after 20
seconds around 20% of our, wave magnitude has disappeared.

1 r"""
2 Solving an Advective PDE with finite differences.
3

4 The PDE described by
5

6 .. math::
7 u_{t} + u_{x} = 0 \quad \forall x \in\Omega = [0, 1] \;\; \& \;\; t > 0
8

9 With a periodic boundary condition. The approximation used is a second order
10 finite difference scheme in space with both a forward and backward Euler method
11 of lines implementation to handle the time direction.
12

13 The goal is to implement the code in python and not rely on existing solvers.
14

15 Bram Lagerweij
16 COHMAS Mechanical Engineering KAUST
17 2021
18 """
19

20 # Importing External modules
21 import sys
22 import matplotlib.pyplot as plt
23 import numpy as np
24

25 # Importing my own scripts
26 sys.path.insert(1, '../src')
27 from finitedifference import advective
28 from solvers import forwardEuler, backwardEuler
29

30

31 if __name__ == '__main__':
32 # Define properties.

(continues on next page)
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(continued from previous page)

33 dx = 1e-2
34 dt = 1e-4
35 t_end = 20
36 c = 2 # Advective term
37

38 # Define discrete ranges.
39 dof = int(1 / dx) + 1
40 x, dx = np.linspace(0, 1, dof, retstep=True)
41 t = np.arange(0, t_end + dt, step=dt)
42

43 # Prepare solver.
44 u0 = np.sin(2 * np.pi * x) # Initial condition
45

46 # Solve the problem using method of lines.
47 u_forw = forwardEuler(advective, u0, dt, t_end, args=(dof, dx, c))
48 # u_back = backwardEuler(advective, u0, dt, t_end, args=(dof, dx, c))
49

50 # Plotting the results.
51 plt.xlim(0, 1)
52 plt.ylim(-1, 1)
53 plt.annotate('time t={}'.format(t[-1]), xy=(0.5, 0.9), ha='center')
54 plt.tight_layout()
55

56 plt.plot(x, u_forw, label='forward')
57 # plt.plot(x, u_back, label='backward')
58

59 plt.legend()
60 plt.show()

1.1.2 2 Approximation of functions

Consider the function:

𝑓(𝑥) = sin4(2𝜋𝑥) ∀𝑥 ∈ Ω = [0, 1]

for which we have to find multiple global and local approximations. Let 𝑓ℎ(𝑥) be such an approximation for a given
grid. We consider the following errors:

𝐸1 :=

∫︁
Ω

|𝑓(𝑥) − 𝑓ℎ(𝑥)|𝑑𝑥 and 𝐸2 :=

∫︁
Ω

(︀
𝑓(𝑥) − 𝑓ℎ(𝑥)

)︀2
𝑑𝑥

2.1 Global Approximations

Consider the following approximations all with 𝑁 terms:

1. the Taylor series around 𝑥 = 0.5,

2. the Fourier series,

3. a global polynomial interpolation on the closed interval given by:

𝑓ℎ(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + · · · + 𝑎𝑁−1𝑥

𝑁−1

Consider different levels of refinement, 𝑁 = 4, 5, 6, . . . , 10 and for each approximation report both 𝐸1 and 𝐸2.

1.1. Homework 1 7
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2.1.1 Taylor series

The Taylor series till the order 𝑁 is defined through:

𝑓ℎ(𝑥) =

𝑁∑︁
𝑛=0

𝑓 (𝑛)(𝑥0)

𝑛!
(𝑥− 𝑥0)𝑛

Which immediately got me into problems, analyzing the 𝑛-th derivative of a function is a numerically a pain. Quickly
the round off errors become significant, and from the 5th derivative onward the basic scipy Taylor series function
became useless. As a result I decided to hardcode the weighting constants in our expansion, these are obtained from
manual derivatives.

Fig. 1.5: : Approximating 𝑓(𝑥) with a Taylor series centered around 𝑥0 = 0.5 till order 10.

From Fig. 1.5 it can be observed that the Taylor series is not a very efficient approximation. At the boundary of our
domain the error is very high.

2.1.2 Fourier series

The Fourier series, which we assume to be real, approximates the equation with:

𝑓ℎ(𝑥) =

𝑁∑︁
𝑛=0

𝑐𝑛 exp
2𝜋𝑛𝑥

𝑃 𝑖 +𝑐𝑛 exp− 2𝜋𝑛𝑥
𝑃 𝑖

where 𝑃 is the period of the function 𝑓(𝑥) and 𝑐𝑛 are complex valued coefficients that can be found through a Fourier
Transform. In our case I used a FFT algorithm to find these coefficients from our discrete dataset, essentially the
real-FFH tries to solve:

𝑐𝑛 =

𝐾∑︁
𝑛=0

𝑥𝑘 exp
2𝜋𝑘𝑛
𝐾−1 𝑛 = 0, . . . , 𝑁

in a highly efficient manner. Notice that for each unknown 𝑐𝑛 consists of a real and imaginary part. This does mean
that this approximation for any given 𝑁 is more complex. The resulting approximation is shown in Fig. 1.6. Which
show that this series is highly efficient in the approximation of our function. This is not to surprising, after all we
are approximation a trigonometric functions with a series of trigonometric functions it is likely that we find the exact
function somewhere in our series.

Fig. 1.6: : Approximating 𝑓(𝑥) with a Fourier series seems to be exact from the fourth order.

2.1.3 Polynomial series

The polynomial series

𝑓ℎ(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + · · · + 𝑎𝑁−1𝑥

𝑁−1

was to be found with a fitting through 𝑁 evenly spaced points 𝑥𝑖 throughout this interval. It should be noted that this
type of fitting can be rewritten as an minimization:

𝑎0,...,𝑎𝑁−1

𝑁∑︁
𝑖=0

(︀
𝑓(𝑥𝑖) − 𝑓ℎ(𝑥𝑖)

)︀2
8 Chapter 1. AMCS 394E: FEM
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𝑡ℎ𝑎𝑡𝑚𝑒𝑎𝑛𝑠 : 𝑓𝑖𝑛𝑑𝑎0, . . . 𝑎𝑁−1𝑠𝑢𝑐ℎ𝑡ℎ𝑎𝑡𝑓(𝑥𝑖) − 𝑓ℎ(𝑥𝑖) = 0 ∀𝑥𝑖

This minimization can efficiently be casted to a system of equations and subsequently be solved. This system of equa-
tions has 𝑁 unknowns and 𝑁 functions, and because each of these functions is linearly independent a solution exists.
Simply said we construct a polynomial that goes exactly through these 𝑁 points.

Fig. 1.7: : Approximating 𝑓(𝑥) with a polynomials of order 𝑁 − 1 using 𝑁 sample points.

One can also choose to use more sample points to evaluate the minimization problem, lets consider that we use 𝑀
sample points. It is not generally possible to find a 𝑁 − 1 order polynomial to fit exactly through more then 𝑁 points.
But we can find the best polynomial, to be specific one that minimizes:

𝑎0,...,𝑎𝑁−1

𝑀∑︁
𝑖=0

(︀
𝑓(𝑥𝑖) − 𝑓ℎ(𝑥𝑖)

)︀2
Which is as if we are minimizing our error 𝐸2 at only discrete points, instead of solving the integral itself. Anyway,
Fig. 1.8 shows this fit would look like. The results seems closer, because we’re not just minimizing the error at 𝑁 points
but at 5𝑁 points.

Fig. 1.8: : Approximating 𝑓(𝑥) with a polynomials of order 𝑁 − 1 using 𝑀 = 5𝑁 sample points.

2.1.4 Comparison

For the comparison of these different approximations I’ve plotted the errors on a log scale. Please do note that the
Fourier series has 2 times as many unknowns for the 𝑁 compared to the other methods.

Fig. 1.9: : The error 𝐸1 for our different approximations where the approximation order ranges from 1 to 20.

I assume that the error of the Taylor series is increasing because the higher order terms will cause higher errors at the
boundaries of our domain. But all in all it is my opinion that the Taylor series is a bad approximation for this purpose,
it is difficult to calculate due to the derivatives and the result is inaccurate. This is not so surprising however, Taylor
series are meant to approximate the behaviour of a function around a given point 𝑥0 to characterize the local behaviour.
We are here using it on a relatively large domain.

The script used for these computations can be found at 3 GlobalApproximation.py.

2.2 Local Approximations

Split the domain Ω into 𝑁 cells. For each cell 𝐾, compute linear and quadratic approximations 𝑓𝐾(𝑥) where 𝑓𝐾(𝑥𝑖) =
𝑓(𝑥𝑖) where 𝑥𝑖 are evenly spaced gridpoints, including the boundaries of the cell. Compute and report both 𝐸1 and
𝐸2 for a different numbers of cells 𝑁 = 4, 5, 6, . . . , 10.

The approximation by linear elements is created by scaling hat (shape) functions appropriately. These functions are
chosen in such a way that:

1. The sum of all the shape functions together equals one,
∑︀𝑁

𝑛=1 𝜙𝑖(𝑥) = 1 This is called the Partition of Unity
Method.

2. There where a single function reaches its maximum all the other functions equal zero.

1.1. Homework 1 9
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Fig. 1.10: : The error 𝐸2 for our different approximations where the approximation order ranges from 1 to 20.

Then our approximation is defined by:

𝑓ℎ(𝑥) =

𝑁∑︁
𝑛=1

𝑤𝑛𝜙𝑛(𝑥)

where the weights 𝑤𝑛 are unknown. But because the shape function where chosen smartly these weights are indepen-
dent. After all at the point where a single shape function reaches its maximum (1) the other functions are zero. As a
result the weight of this shape function equals the value of the function we are trying to approximate at the center point
of the shape:

𝑤𝑛 = 𝑓(𝑋𝑛)

where 𝑋𝑛 denotes the point where shape function 𝜙𝑛(𝑥) reaches its maximum.

2.2.1 Linear Elements

In the case of linear elements these shape functions are defined as:

𝜙𝑛(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∀ 0

≤ 𝑥 ≤ 𝑋𝑛−1
𝑥−𝑋𝑛−1

𝑋𝑛−𝑋𝑛−1
∀ 𝑋𝑛−1

≤ 𝑥 ≤ 𝑋𝑛

1 − 𝑥−𝑋𝑛

𝑋𝑛+1−𝑋𝑛
∀ 𝑋𝑛

≤ 𝑥 ≤ 𝑋𝑛+1

0 ∀ 𝑋𝑛+1

≤ 𝑥 ≤ 𝐿

where 𝑋𝑛 is the node of this shape function, 𝑋𝑛−1 and 𝑋𝑛+1 the nodes surrounding ours.

A more efficient formulation includes the creation of a unit function that is rescaled depending on the locations of the
nodes. But I haven’t yet implemented such an function yet.

Fig. 1.11: : The function 4 sin(𝜋𝑥)+1 approximated with four elements. The first element contain the orange and half
of the green shape function.

Fig. 1.12: : The function 4 sin(𝜋𝑥) + 1 approximated more and more linear elements.

2.2.2 Quadratic Elements

In the case of quadratic elements there are two different types of shape function. One of these function extents into two
elements, similar to what the linear element does. The second shape function is only inside a single element, and on an
interior node. This node is placed exactly in the middle between the start and end of the element. I’ll give these nodes

10 Chapter 1. AMCS 394E: FEM



AMCS 394E: FEM, Release 0.1.1

Fig. 1.13: : The approximation of 𝑓(𝑥) with linear elements.

the subscripts 𝑛− 1
2 and 𝑛 + 1

2 . Now the shape functions are defined by:

𝜙𝑛(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∀ 0

≤ 𝑥 ≤ 𝑋𝑛−1

2
(𝑋𝑛−𝑋𝑛−1)2

(𝑥−𝑋𝑛−1)(𝑥−𝑋𝑛− 1
2
) ∀ 𝑋𝑛−1

≤ 𝑥 ≤ 𝑋𝑛

2
(𝑋𝑛+1−𝑋𝑛)2

(𝑥−𝑋𝑛+1)(𝑥−𝑋𝑛+ 1
2
) ∀ 𝑋𝑛

≤ 𝑥 ≤ 𝑋𝑛+1

0 ∀ 𝑋𝑛+1

≤ 𝑥 ≤ 𝐿

𝜙𝑛− 1
2
(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∀ 0

≤ 𝑥 ≤ 𝑋𝑛−1

− 4
(𝑋𝑛−𝑋𝑛−1)2

(𝑥−𝑋𝑛−1)(𝑥−𝑋𝑛) ∀ 𝑋𝑛−1

≤ 𝑥 ≤ 𝑋𝑛

0 ∀ 𝑋𝑛+1

≤ 𝑥 ≤ 𝐿

Again a more efficient formulation includes the creation of a unit function that is rescaled depending on the locations
of the nodes. But I haven’t yet implemented such an function yet.

Fig. 1.14: : The function 4 sin(𝜋𝑥)+1 approximated with four elements. The first element contain the orange and half
of the green shape function.

Fig. 1.15: : The function 4 sin(𝜋𝑥) + 1 approximated more and more quadratic elements.

It is important to notice from Fig. 1.16 that the resulting curve is not smooth. for example at 𝑥 = 0.5 one can see that
the red approximation (6 elements) is non-smooth.

2.2.3 Comparison

For the comparison of these different approximations I’ve plotted the errors on a log scale. Please do note that the
quadratic elements have (𝑁+1)𝑁 unknowns where the linear elements have𝑁+1 weights to be determined. Neverthe-
less there is no interdependency between these weights, which as mentioned before means that these can be determined
independently.

The script used for these computations can be found at 4 LocalApproximation.py.

𝑝ℎ𝑦𝑠𝑖𝑐𝑠 * 𝑎𝑟𝑔𝑚𝑖𝑛

1.1. Homework 1 11
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Fig. 1.16: : The approximation of 𝑓(𝑥) with quadratic elements.

Fig. 1.17: : The error 𝐸1 for our element based approximations with 1 to 20 elements.

1.2 Homework 2

Topic
Homework regarding the third week. The goal is to work with simple 1D FEM methods. We’ll be solving several PDEs
and project function on a FEM space.

Bram Lagerweij 2 Mar 2021

Table of Contents

• 1 Project the Navier-Stokes equations

– 1.1 The shape functions

– 1.2 Weak form of Chorin’s projection

• 2 Project a smooth function to FE space

– 2.1 Projection

– 2.2 Evaluate Projection

• 3 Project a non-smooth function to FE space
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1.2.1 1 Project the Navier-Stokes equations

Consider the incompressible Navier-Stokes equations in non-conservative form:

𝜕𝑡�⃗� + �⃗� �⃗� +
1

𝜌
𝑝− 𝜇2�⃗� = 𝑓 ∀ �⃗� ∈ Ω

�⃗� = 0 ∀ �⃗� ∈ Ω

�⃗��⃗� = 0 ∀ �⃗� ∈ Ω

where �⃗�, �⃗�, 𝑓 , �⃗� ∈ R𝑑 are the speed, location, external forces and surface normal, 𝜌 the density, 𝜇 the viscosity and 𝑝
the pressure. The original Chorin’s projection method considers the following discretziation in time:

�⃗�* − �⃗�𝑛

∆𝑡
+ �⃗�𝑛 �⃗�𝑛 − 𝜇2�⃗�* = 𝑓

Fig. 1.18: : The error 𝐸2 for our element based approximations with 1 to 20 elements.
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where we ingore the pressure as a kind of operation splitting. The non-linear term is treated explicitely to avoid the
non-linearity and we treat the viscouse term implicitely to avoid extreme small time step restrictions. However this
does not ensure that �⃗�* = 0. To fix this, the projection method considers:

�⃗�𝑛+1 − �⃗�*

∆𝑡
= −1

𝜌
𝑝𝑛+1

When we take the divergence we impose �⃗�𝑛+1 = 0 to get:

∆𝑝𝑛+1 =
𝜌

∆𝑡
�⃗�*

Finaly, the updated divergence-free velocity is given by:

�⃗�𝑛+1 = �⃗�* − ∆𝑡

𝜌
𝑝𝑛+1

1.1 The shape functions

Consider two discrete spaces. For the velocity and pressure use continuous piecewise bi-quadratic and bilinear poly-
nomials (in 2D)

𝑝1(𝑥, 𝑦) = 𝑐0𝑥 + 𝑐1𝑦 + 𝑐2𝑥𝑦 + 𝑐3

𝑝2(𝑥, 𝑦) = 𝑐0𝑥
2 + 𝑐1𝑥

2𝑦 + 𝑐2𝑥
2𝑦2 + 𝑐3𝑦

2 + 𝑐4𝑥𝑦
2 + 𝑐5𝑥 + 𝑐6𝑦 + 𝑐7𝑥𝑦 + 𝑐8

respectively. How many shape function do we have for each space in the reference element? Derive the shape func-
tions for the reference element (hint: use tensor products). The code used to plot these two figures is available in 1
shape2D.py.

Fig. 1.19: : Quadrilateral elements with linear shape functions.

Fig. 1.20: : Quadrilateral elements with quadratic shape functions.

1.2 Weak form of Chorin’s projection

Consider the previously described NS-equations and the Chorin’n projection method and obtain:

1. Weak formulation, From what I understand the this approach goes in three steps:

1. Solve PDE 1,
�⃗�* − �⃗�𝑛

∆𝑡
+ �⃗�𝑛 �⃗�𝑛 − 𝜇2�⃗�* = 𝑓

where �⃗�* is the unknown and all other variables are known. This is PDE can be written into the
following format:

𝛼�⃗�* − 𝛽2�⃗�* = �⃗�1

which is a non-homogeneous diffusion equation, but vector valued, as �⃗� is a vector.

2. Solve PDE 2:
2𝑝𝑛+1 =

𝜌

∆𝑡
�⃗�*

where 𝑝 is the variable to be determined, through the a Poisson equation.

2𝑝𝑛+1 = �⃗�2
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3. Obtain new primal �⃗� by updating it through:

�⃗�𝑛+1 = �⃗�* − ∆𝑡

𝜌
𝑝𝑛+1

This is simply an update, there is no PDE to be solved and everything on the right hand side is
known.

2. Discrete weak form and, Incomplete.

3. The linear algebra representation of the problem. I’ll first need to find the answer to the previous question,
nevertheless it is clear that we need at least the mass and the stiffness matrix for the first PDE. The transport
matrix is also required to compute the right hand side in the first PDE.

1.2.2 2 Project a smooth function to FE space

From HW1 we consider the following function again:

𝑓(𝑥) = sin4(2𝜋𝑥) ∀ 0 ≤ 𝑥 ≤ 1

and project it on the finite element space.

2.1 Projection

Perform the projection through the following steps.

1. Consider piecewise linear and quadratic continuous polynomials. Done, see element.shape1d().

2. Consider the reference element [0, 1] and interpolatory basis functions to derive the shape functions for each space.
Done, see element.shape1d().

3. What is the weak formulation and the linear algebra problem associated with the projection? The
derivation of the weak form is described at pde.projection().

4. Compute the entries of the mass matrix for each space. Done, see fem.element_mass().

5. Solve the system to obtain the DoF associated with the projection. Done, see solvers.solve().

6. Plot the projected functions considering 𝑁 = 25, 50, 100 and 200 cells. Done, the main code, in 2 Projec-
tionFE.py, was used to create Fig. 1.21 and Fig. 1.22.

Fig. 1.21: : Approximating 𝑓(𝑥) with a finite element projections with 𝑁 linear elements.

Fig. 1.22: : Approximating 𝑓(𝑥) with a finite element projections with 𝑁 quadratic elements.

2.2 Evaluate Projection

For both projections compute the following two errors

𝐸1 =

∫︁ 1

0

‖𝑓(𝑥) − 𝑓ℎ(𝑥)‖𝑥𝐸2 =

√︃∫︁ 1

0

(𝑓(𝑥) − 𝑓ℎ(𝑥))2𝑥

where 𝑓ℎ(𝑥) is the projection of 𝑓(𝑥) on our FE space.
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Fig. 1.23: : Comparing error 1 to the number of elements shows faster convergence of the quadratic elements. The
order seems to be 2 and 3 respectively.

Fig. 1.24: : Comparing error 2 to the number of elements shows faster convergence of the quadratic elements. The
order seems to be 2 and 3 respectively.

Estimate the order of convergence for each space. That is assume that the error behaves as:

𝐸 = 𝑐ℎ𝑝

where 𝑐 is a constant and ℎ = 1/𝑁 is the mesh size. When is the value of 𝑝? Does this error behave different for the
different spaces and norms?

Table 1.1: : The convergence power of different approximations to the
smooth projection.

Linear Quadratic
N E1

p(1/N)
E2
p(1/N)

E1
p(1/DoFs)

E2
p(1/DoFs)

E1
p(1/N)

E2
p(1/N)

E1
p(1/DoFs)

E2
p(1/DoFs)

4 1.93 1.90 2.61 2.57 1.98 1.93 2.33 2.28
8 1.17 1.16 1.38 1.37 2.09 2.02 2.28 2.20
16 1.83 1.67 1.99 1.82 2.80 2.82 2.92 2.95
32 2.27 2.20 2.37 2.30 2.75 2.75 2.82 2.81
64 2.09 2.05 2.13 2.10 2.95 2.91 2.98 2.95
128 2.02 2.01 2.04 2.04 2.99 2.98 3.01 2.99
256 2.01 2.00 2.02 2.01 3.01 2.99 3.01 3.00
512 2.00 2.00 2.01 2.01 3.00 3.00 3.00 3.00
1024 2.00 1.99 2.00 2.00 3.00 3.00 3.00 3.00
2048 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00
4096 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00
8192 2.00 2.00 2.00 2.00 3.01 3.00 3.01 3.00
16384 2.00 1.99 2.00 1.99 3.00 3.00 3.00 3.00
32768 2.00 2.01 2.00 2.01 3.00 3.00 3.00 3.00
65536 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00
131072 2.00 2.00 2.00 2.00 3.00 3.00 3.00 3.00

Fig. 1.25: : Comparing error 1 to the amount of degrees of freedom still shows faster convergence of the quadratic
elements. Clearly the difference is less pronounced, because the quadratic elements have more unknowns per element.
The order seems to be 2 and 3 respectively.
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Fig. 1.26: : The result for error 2 is again similar to that for error 1. The order seems to be 2 and 3 respectively.

1.2.3 3 Project a non-smooth function to FE space

Preform the same projection for the following non-smooth function:

𝑓(𝑥) =

{︃
1 0.35 ≤ 𝑥 ≤ 0.65

0 otherwise

For which the the main code can be found in 3 ProjectionFE.py

Fig. 1.27: : Approximating the discrete function with a finite element projections with 𝑁 linear elements is not im-
proving with a refined mesh. The spikes around the step change keep the same height, although the width is reducing.

Fig. 1.28: : Moving to quadratic elements make it even worse, the spikes at the step change get higher.

Table 1.2: : The convergence power of different approximations of the
non smooth projection.

Linear Quadratic
N E1

p(1/N)
E2
p(1/N)

E1
p(1/DoFs)

E2
p(1/DoFs)

E1
p(1/N)

E2
p(1/N)

E1
p(1/DoFs)

E2
p(1/DoFs)

4 0.95 0.53 1.29 0.72 0.72 0.37 0.85 0.44
8 0.27 1.39 0.31 1.64 0.21 1.02 0.22 1.11
16 1.41 0.34 1.53 0.37 0.70 -0.01 0.73 -0.01
32 0.47 1.64 0.49 1.71 0.30 1.01 0.30 1.04
64 1.51 0.35 1.55 0.36 0.70 -0.01 0.71 -0.01
128 0.49 1.65 0.49 1.66 0.30 1.01 0.30 1.02
256 1.52 0.35 1.53 0.35 0.70 -0.01 0.71 -0.01
512 0.48 1.65 0.48 1.65 0.29 1.01 0.29 1.01
1024 1.52 0.35 1.52 0.35 0.71 -0.01 0.71 -0.01
2048 0.48 1.64 0.48 1.65 0.29 1.02 0.29 1.02
4096 1.52 0.36 1.52 0.36 0.71 -0.01 0.71 -0.01
8192 0.48 1.64 0.48 1.64 0.29 1.01 0.29 1.01
16384 1.51 0.35 1.51 0.35 0.70 -0.02 0.70 -0.02
32768 0.49 1.64 0.49 1.64 0.31 1.01 0.31 1.01
65536 1.53 0.38 1.53 0.38 0.72 0.02 0.72 0.02
131072 0.46 1.64 0.46 1.64 0.25 1.06 0.25 1.06

1.2.4 4 Solve Advection-Diffusion PDE with FE

Consider the one-dimensional advection diffusion equation:

𝑢𝑡 + 𝑢𝑥 − 𝜇𝑢𝑥𝑥 = 0 ∀ 𝑥 ∈ Ω = [0, 2𝜋]

where 𝜇 > 0 is a coefficient. Consider periodic boundary conditions and the following initial conditions:

𝑢(𝑥, 0) = sin4(𝑥)
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Fig. 1.29: : Comparing error 1 to the number of elements shows faster convergence for the linear elements. The order
seems to be 1 and less then 1 respectively.

Fig. 1.30: : Both approximations seem to be equally bad. The order seems to be less then 1.

The exact solution to this equation is given by:

𝑢(𝑥, 𝑡) =
3

8
− 1

2
exp−4𝜇𝑡 cos(2(𝑥− 𝑡)) +

1

8
exp−16𝜇𝑡 cos(4(𝑥− 𝑡))

4.1 Solve through FEM

Solve this problem using a FEM implementation with the following steps:

1. Consider continuous piecewise linear polynomials and interpolatory basis functions. Done, see
element.shape1d().

2. Obtain the discrete weak formulation. We need two steps here, firstly we need to project the initial condition,
for which the weak form is derived in pde.projection(). Secondly the PDE will be solved using the
method of lines, see solvers.forwardEuler() and solvers.backwardEuler(), which needs to be
fed with the weak form of the PDE, avalible at pde.advectivediffusive().

3. Identify the different matrices associated with the finite element discretization. For these functions the
Mass (fem.element_mass), Transport (fem.element_transport) and Stiffness (fem.element_stiffness) ma-
trices need to be obtained.

4. Implement and solve the equation via finite elements up to 𝑡 = 2𝜋. Done, the code in Done, the main code,
in 4_AdvectionDiffusion.py, produces Fig. 1.33, Fig. 1.34, Fig. 1.35 and Fig. 1.36.

4.2 Compute the error

Compute the errors 𝐸1 and 𝐸2 and compare the results to those of previous weeks homework, in which the same PDE
was solved using a Finite Difference approach. Preform a convergence test as described in 2.2 Evaluate Projection.

Table 1.3: : The convergence power of the different approximation
schemes.

FD forward FD backward FE forward FE backward
N dt p E1 p E2 p E1 p E2 p E1 p E2 p E1 p E2
4 6.25E-04 -1.65 -1.87 -1.65 -1.87 2.53 2.52 2.53 2.52
8 1.56E-04 -2.06 -1.86 -2.06 -1.85 -1.55 -1.66 -1.55 -1.66
16 3.91E-05 0.56 0.35 0.56 0.35 2.08 2.19 2.08 2.19
32 9.77E-06 1.66 1.61 1.66 1.61 3.52 3.40 3.50 3.39
64 2.44E-06 1.90 1.84 1.90 1.84 2.33 2.29 2.33 2.28
128 6.10E-07 1.99 1.99 1.99 1.99 2.02 2.02 2.02 2.02

Fig. 1.31: : The linear approximation is better then the quadratic one. The order seems to be 1 and less then 1 respec-
tively.
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Fig. 1.32: : Both approximations seem to be equally bad. The order seems to be less then 1.

Fig. 1.33: : In this course grid large differences between the FD and FE methods can be observed. The forward and
backward scheme preform nearly the same.

𝑝ℎ𝑦𝑠𝑖𝑐𝑠

1.3 About

Toppic
The reason for me is to solve classical problems in Solid Mechanics. This section, and those below will introduce the
typical equations that are encountered in solid mechanics. This section is not exhaustive and it might be extended in
the future to discuss more details.

Bram Lagerweij 11 Feb 2020

The examples will become gradually more complex. It starts with the simplest problem, the Laplace equation:

2𝑢(�⃗�) = 0 ∀�⃗� ∈ Ω

In here one can imagine various levels of complication:

1. With a simple geometry, no sharp corners, and a combination of Neuman and Diriclet boundary conditions.

2. With a more complex geometry, sharp corners, cracks and inclusions.

3. With a ‘non-linear’ stiffness, (�⃗� 𝑢(�⃗�)) adding a non-constant variable �⃗� which is a function depending some-
howe on 𝑢.

4. Where �⃗� is non-linear and history dependent, aka �⃗�(𝑛+1) is a function af all previous timesteps.

5. With softening in the non-linear stiffness 𝐶, that is the tangent of �⃗� 𝑢 will become negative at some point.

6. Versions in 3D

Moving on to solids where we solve elasticity and plasticity equations:

𝜎 + �⃗� = 0 ∀�⃗� ∈ Ω

𝑤ℎ𝑒𝑟𝑒𝜎 = 𝐶 : 𝜀

𝜀 =
1

2

(︀
�⃗� + (�⃗�)𝑇

)︀
The simplest problem would be linear elasticity, but more complicated versions can be build as well.

1. With a simple geometry, no sharp corners, and a combination of Neuman and Diriclet boundary conditions.

2. With a more complex geometry, sharp corners, cracks and inclusions.

Fig. 1.34: : With a finer grid and time step the differences become smaller.
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Fig. 1.35: : And smaller.

Fig. 1.36: : At the finished mesh and time step the results become quite close to the exact solution.

3. Large displacements (geometrically non-linear) and deformations (this might require a different strain measure).

4. Softening and possbily fracture.

5. Self Contact.

𝑝ℎ𝑦𝑠𝑖𝑐𝑠

1.4 Poisson Equation

Toppic
The Poisson equation is the simplest example of the PDE’s considerd in Solid Mechanics. It is an eliptical PDE, and
is simplified compared to linear elasticity in the sense that its solution is a scalar field, instead fo the vector field found
in elasticity problems. This makes Poisson’s equation a good start to explore numerical solving strategies for Solid
Mechanics problems.

Bram Lagerweij 11 Feb 2020

Table of Contents

• 1 Laplace Equation

• 2 Poisson equation

– Example 1: Dirichlet

– Example 2: Dirichlet and Neumann

Fig. 1.37: : The finite element method seems to converge faster with respect to error 1. This must come from the
change in mass matrix, as the stiffness and transport matrix don’t differ from the FD method. There does not seem to
be a difference between the forward and backwards methods, because the time steps are small enough for the forward
method to be stable.

1.4. Poisson Equation 19
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Fig. 1.38: : The behaviour of 𝐸2 is similar to that of 𝐸1.

1.4.1 1 Laplace Equation

The most basic description of the Laplace equation is given by:

2𝑢(�⃗�) = [2]𝑢𝑥 + [2]𝑢𝑦 = 0

∀�⃗� ∈ Ω

s.t.: 𝑢(�⃗�) = ⃗̃𝑢(�⃗�)

∀�⃗� ∈ 𝒮𝑢

𝑢(�⃗�) = ˜⃗𝑡(�⃗�)

∀�⃗� ∈ 𝒮𝑡

Where the entirety of the boundary 𝜕Ω is the union of these to boundary conditions that do not intersect.

𝜕Ω = 𝒮𝑢 ∪ 𝒮𝑡

0 = 𝒮𝑢 ∩ 𝒮𝑡

The following images summarizes this.

Fig. 1.39: A domain Ω subjected to the Laplace equation with combined boundary conditions.

1.4.2 2 Poisson equation

In case of non-homogeneous formulations the Laplace equations is called the Poisson equation.

2𝑢(�⃗�) = [2]𝑢𝑥 + [2]𝑢𝑦 = �⃗�(�⃗�)

∀�⃗� ∈ Ω

s.t.: 𝑢(�⃗�) = ⃗̃𝑢(�⃗�)

∀�⃗� ∈ 𝒮𝑢

𝑢(�⃗�) = ˜⃗𝑡(�⃗�)

∀�⃗� ∈ 𝒮𝑡

The boundary condition can still be defined in the same way as in the Laplace equation. An example of such a Poisson
problem in 1D is a statically determinate Euler-Bernoulli beam problem. Solving a these linear beam problem can be
done with finite differences.

The PDE described by

𝐸𝐼𝑢′′(𝑥) = 𝑀(𝑥) ∀𝑥 ∈ Ω = [0, 𝐿]

Where 𝑀 is the internal bending moment of the beam. This beam has a length 𝐿 and a stiffness EI. In general these
kinds of problems can not be solved directly in this way, as it is not always possible to describe the moment explicitly,
but because our cantilever beam is statically determinate it can be done. Now we’ll be exploring two examples to
introduce the different types of boundary conditions.

20 Chapter 1. AMCS 394E: FEM
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Example 1: Dirichlet

Fig. 1.40: A beam that is simply supported at 𝑥 = 0 and 250 mm and subjected to a point load.

In this example we consider a beam with a length of 1000mm which is simply supported at 𝑥 = 0 and 𝑥 = 250. Simply
supported means that the displacement 𝑢 at those points is fixed and equals 0. That is our ODE becomes:

𝐸𝐼 𝑢′′(𝑥) =𝑀(𝑥) ∀ 0 ≤ 𝑥 ≤ 1000

where: 𝑀(𝑥) =

{︃
−3𝑃𝑥 0 ≤ 𝑥 ≤ 𝐿/4

𝑃 (𝑥− 𝐿) 𝐿/4 ≤ 𝑥 ≤ 𝐿

s.t.: 𝑢(0) = 0

𝑢(𝐿/4) = 0

where I did compute the moment equation explicitly already. To derive 𝑢′′ a central difference scheme is used,

𝑢′′(𝑥) =
𝑢(𝑥− 𝑑𝑥) − 2𝑢(𝑥) + 𝑢(𝑥 + 𝑑𝑥)

𝑑𝑥2

We’ll be evaluating this derivative an 𝑁 regularly distributed points in our domain. And if we note 𝑥𝑛 as the location
of one of these points than we can note the derivative as:

𝑢′′(𝑥𝑛) =
𝑢(𝑥𝑛−1) − 2𝑢(𝑥𝑛) + 𝑢(𝑥𝑛+1)

𝑑𝑥2

This is implemented into a matrix format by finitedifference.Dxx(), such that:

𝑢′′ = 𝐷𝑥𝑥𝑢

where 𝑢 is a vector with the field at all the discrete points and 𝑢′′ the derivative that was calculated. This does however
not yet specify the way to analyze the derivative at the first and last points. After all that would require the calculation
of 𝑢 outside the domain. As a result the matrix will have an empty first and last row.

This and the right hand side (𝑓 ) of the Poisson equation are available through finitedifference.poisson(). You
would expect that we can solve the system of equations:

𝐸𝐼 𝐷𝑥𝑥 𝑢 = 𝑓

but that is not true, as we’ll have to deal with the boundary conditions as well, without those the problem is singular.
To be specific we know that 𝑢(0) = 0 and 𝑢(𝐿/4) = 0, this can be used to make the problem determinate. Lets say
that 𝑥0 = 0 and 𝑥𝑛 = 𝐿/4 then we can add the following to equations to our system of equations:

𝑢0 = 0𝑎𝑛𝑑𝑢𝑛 = 0

these two equations can be placed in the still empty first and last row of our stiffness matrix and right hand side. That
is in the first row we make the first element equal to 1 and the rest all equal to 0. Similarly the right hand side of the
first degree of freedom is set to 0. In the last row we set the degree of freedom that corresponds to 𝑥𝑛 to 1 and the rest
to 0, here we do also set the right hand side of the last row equal to zero (see lines 53 to 61 in the code below).

Fig. 1.41: The finite difference solution of the beam problem seems to be in good agreement with the exact result. This
simulation was run with 101 degrees of freedom.
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1 # Importing External modules
2 import sys
3 import numpy as np
4 from scipy.sparse.linalg import spsolve
5

6 # Importing my own scripts
7 sys.path.insert(1, '../src')
8 from finitedifference import poisson
9

10

11 def moment(P, L):
12 """
13 Moment as a function of :math:`x` of the double simply supported beam.
14

15 Parameters
16 ----------
17 P : float
18 Applied load.
19 L : float
20 Length of the beam
21

22 Returns
23 -------
24 callable
25 The moment :math:`M(x)` of the beam.
26 """
27

28 def fun(x):
29 shape = np.shape(x)
30

31 if len(shape) == 0:
32 if x < L / 4:
33 m = -3 * P * x
34 else:
35 m = P * (x - L)
36 else:
37 m = np.zeros_like(x)
38 ind = np.where(x < L / 4) # where x < L/4
39 m[ind] = -3 * P * x[ind]
40

41 ind = np.where(L / 4 <= x) # where L/4 < x
42 m[ind] = P * (x[ind] - L)
43 return m
44

45 return fun
46

47

48 if __name__ == '__main__':
49 # Define properties of the problem.
50 L = 1000 # 1000 mm length
51 P = 1 # 1 N load
52 EI = 187500000 # Beam bending stiffness Nmm^4
53

(continues on next page)
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(continued from previous page)

54 # Discretion of the space.
55 dof = 101 # Number of nodes
56 x, dx = np.linspace(0, L, dof, retstep=True)
57

58 # Calculate the internal Moment.
59 M = moment(P, L) # Create a callable for the moment in Nmm
60

61 # Create linear problem.
62 K, f = poisson(dof, dx, M, c=EI)
63

64 # Boundary condition u(0) = 0
65 K[0, 0] = 1
66 f[0] = 0
67

68 # Boundary condition u(L/4) = 0 For this purpose we use
69 # the last row of the matrix, this row is not yet used.
70 index = int(dof / 4)
71 K[-1, index] = 1
72 f[-1] = 0
73

74 # Solve the problem.
75 u = spsolve(K, f)

Example 2: Dirichlet and Neumann

Fig. 1.42: A cantilever beam is fixed in the wall of the left and subjected to a point load at the right. This type of
constraint, called an endcast, limits both the displacement and rotation, that is 𝑢(0) = 0 and 𝑢′(0) = 0.

The approach follows exactly what was described in example 1, except of course the constraints. Our problem is
formulate following:

𝐸𝐼 𝑢′′(𝑥) = 𝑀(𝑥) ∀ 0 ≤ 𝑥 ≤ 1000

where: 𝑀(𝑥) = 𝑃 (𝑥− 𝐿)

s.t.: 𝑢(0) = 0

𝑢′(0) = 0

where the moment did change as well because the loading conditions changed. That is after discritization our system
of equations is represented by:

𝐸𝐼 𝐷𝑥𝑥 𝑢 = 𝑓

Now as for the boundary conditions, for the first row we again fill the first element with a 1 and leave the rest 0. In the
right hand side we set the value of the forcing term equal to zero. As a result the first row reads:

𝑢(𝑥0) = 0

Now for the Neumann boundary it is a bit more tricky. The derivative 𝑢′(𝑥0) can be approximated with a backwards
finite difference:

𝑢′(𝑥0) =
−𝑢(𝑥0) + 𝑢(𝑥1

𝑑𝑥
= 0
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I’ll put this in the last row as that one is not yet populated. That means that we have to populate the first element of
the last row with a -1, the second element of that row with a 1 and set the last element of the right hand side to zero as
well. (see lines 64 to 72 below)

Fig. 1.43: The finite difference solution of the beam problem seems to be in good agreement with the exact result. This
simulation was run with 101 degrees of freedom.

1 # Importing External modules
2 import sys
3 import numpy as np
4 from scipy.sparse.linalg import spsolve
5

6 # Importing my own scripts
7 sys.path.insert(1, '../src')
8 from finitedifference import poisson
9

10

11 def moment(P, L):
12 """
13 Moment as a function of :math:`x` of the cantilever beam.
14

15 Parameters
16 ----------
17 P : float
18 Applied load.
19 L : float
20 Length of the beam
21

22 Returns
23 -------
24 callable
25 The moment :math:`M(x)` of the beam.
26 """
27 def fun(x):
28 return P*(x-L)
29 return fun
30

31

32 if __name__ == '__main__':
33 # Define properties of the problem.
34 L = 1000 # 1000 mm length
35 P = 1 # 1 N load
36 EI = 187500000 # Beam bending stiffness Nmm^4
37

38 # Discretion of the space.
39 dof = 101 # Number of nodes
40 x, dx = np.linspace(0, L, dof, retstep=True)
41

42 # Calculate the internal Moment.
43 M = moment(P, L) # Create a callable for the moment in Nmm
44

45 # Create linear problem.
(continues on next page)
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(continued from previous page)

46 K, f = poisson(dof, dx, M, c=EI)
47

48 # Boundary condition u(0) = 0
49 K[0, 0] = 1
50 f[0] = 0
51

52 # Boundary condition u'(0) = 0 with a finite difference.
53 # For this purpose we use the last row of the matrix
54 # This row is not yet used
55 K[-1, 0] = -1 / dx
56 K[-1, 1] = 1 / dx
57 f[-1] = 0
58

59 # Solve the problem.
60 u = spsolve(K, f)

1.5 Partial Differential Equations

Storing various PDEs that can be will be solved in this course. This includes:

• Diffusive 1D

𝑢𝑡 − 𝜇𝑢𝑥𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

• Advective 1D

𝑢𝑡 + 𝑐𝑢𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

• Diffusive-Advective 1D

𝑢𝑡 + 𝑐𝑢𝑥 − 𝜇𝑢𝑥𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

• Poisson in 1D

𝑢𝑥𝑥 = 𝑓(𝑥) ∀𝑥 ∈ Ω = [0, 𝐿]

The goal is to implement the code in python and not rely on existing methods.

Bram Lagerweij COHMAS Mechanical Engineering KAUST 2021

pde.advective(x, connect, c, num_q, order)
Time derivative of the PDE for advective diffusive problems.

𝑢𝑡 + 𝑐𝑢𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0
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Which, is converted into a weak form through:∫︁
Ω

(�̃�𝑡 + 𝑐�̃�𝑥)𝜑𝑖(𝑥)𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

Where �̃� is our approximation:

�̃�(𝑥) =

𝑁∑︁
𝑛=1

�̄�𝑛𝜑𝑛(𝑥)

in which �̄�𝑛 are the unknowns, socalled degrees of freedom and𝜑𝑛(𝑥) are the basisfunctions of FE approximation
space 𝑉ℎ. Substituting this approximation leads to:∫︁

Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥) + 𝑐𝜕𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

Which we split into different integrals:∫︁
Ω

�̃�𝑡𝑑𝑉 =

∫︁
Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 =

𝑁∑︁
𝑗=1

𝜕𝑡�̄�𝑗

∫︁
Ω

𝜑𝑗(𝑥)𝜑𝑖(𝑥)𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

⇒ 𝑀�̄�

For the first integral we notice that the basis functions are constant through time, only the degrees of freedom �̄�𝑗

vary through time. Similarly these degrees of freedom does not affect the integral over space
∫︀
Ω
𝑑𝑉 . Thus we

can write: ∫︁
Ω

�̃�𝑡𝑑𝑉 =

∫︁
Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

=

𝑁∑︁
𝑗=1

𝜕𝑡�̄�𝑗

∫︁
Ω

𝜑𝑗(𝑥)𝜑𝑖(𝑥)𝑑𝑉

⇒ 𝑀�̄�

where 𝑀 is the mass matrix which combines the integral for all different basis functions. For the second term
we aknoledge that the degrees of freedom have no spatial and temporal effects thus we can take them out of the
integral and derivatives. ∫︁

Ω

𝑢𝑥𝑑𝑉 =

∫︁
Ω

(𝜕𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

=

𝑁∑︁
𝑗=1

�̄�𝑗

∫︁
Ω

𝜕𝑥𝜑𝑗(𝑥)𝜑𝑖(𝑥)𝑑𝑉

⇒ 𝑇 �̄�

where 𝑇 is the socalled transport matrix, wich only depends on the basis functions.

Now we can write our PDE in terms of linear algabra objects:

𝑀�̄�𝑡 + 𝑐𝑇 �̄� = 0

which we modify to be in the format is expected by the temporal solvers:

𝑀�̄�𝑡 = 𝐾�̄�
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Parameters
• x (array_like(float)) – Global coordinates of all degrees of freedom.

• connect (array_like(int), shape((num_ele, dofe/ele))) – Element to degree of
freedom connectivety map.

• c (float) – Advective constant.

• num_q (int) – Number of Gausian quadrature points.

• order (int) – Order of the polynomial used by our element.

Returns
• M (matrix, (sparse csr format)) – The mass matrix.

• K (matrix, (sparse csr format)) – The combination of stiffness and transport matrix matrix
scaled with the approprate constants 𝐾 = −𝑐𝑇 .

• b (vector, (dense array)) – The right hand side, because we consider a homogeneous PDE
with diriclet conditions it is a zero vector.

pde.advectivediffusive(mesh, c, mu)
Time derivative of the PDE for advective diffusive problems.

𝑢𝑡 + 𝑐𝑢𝑥 − 𝜇𝑢𝑥𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

Which, is converted into a weak form through:∫︁
Ω

(�̃�𝑡 + 𝑐�̃�𝑥 − 𝜇�̃�𝑥𝑥)𝜑𝑖(𝑥)𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

Where �̃� is our approximation:

�̃�(𝑥) =

𝑁∑︁
𝑛=1

�̄�𝑛𝜑𝑛(𝑥)

in which �̄�𝑛 are the unknowns, socalled degrees of freedom and𝜑𝑛(𝑥) are the basisfunctions of FE approximation
space 𝑉ℎ. Substituting this approximation leads to:∫︁

Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥) + 𝑐𝜕𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥) − 𝜇𝜕𝑥𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

Which we split into different integrals:∫︁
Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 +

∫︁
Ω

(𝑐𝜕𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 −
∫︁
Ω

(𝜇𝜕𝑥𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

For the first integral we notice that the basis functions are constant through time, only the degrees of freedom �̄�𝑗

vary through time. Similarly these degrees of freedom does not affect the integral over space
∫︀
Ω
𝑑𝑉 . Thus we

can write: ∫︁
Ω

�̃�𝑡𝑑𝑉 =

∫︁
Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

=

𝑁∑︁
𝑗=1

𝜕𝑡�̄�𝑗

∫︁
Ω

𝜑𝑗(𝑥)𝜑𝑖(𝑥)𝑑𝑉

⇒ 𝑀�̄�
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where 𝑀 is the mass matrix which combines the integral for all different basis functions. For the second term
we aknoledge that the degrees of freedom have no spatial and temporal effects thus we can take them out of the
integral and derivatives. ∫︁

Ω

𝑢𝑥𝑑𝑉 =

∫︁
Ω

(𝜕𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

=

𝑁∑︁
𝑗=1

�̄�𝑗

∫︁
Ω

𝜕𝑥𝜑𝑗(𝑥)𝜑𝑖(𝑥)𝑑𝑉

⇒ 𝑇 �̄�

where 𝑇 is the socalled transport matrix, wich only depends on the basis functions. For the thrird part we apply
integration by parts, while assuming that Neumann boundary conditions:∫︁

Ω

�̃�𝑥𝑥𝑑𝑉 =

∫︁
Ω

(𝜕𝑥𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

= −
∫︁
Ω

(𝜕𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜕𝑥𝜑𝑖(𝑥)𝑑𝑉

=

𝑁∑︁
𝑗=1

�̄�𝑗

∫︁
Ω

−𝜕𝑥𝜑𝑗(𝑥)𝜕𝑥𝜑𝑖(𝑥)𝑑𝑉

⇒ 𝑆�̄�

where 𝑆 is the stiffness matrix, which can be computed independently from the actual unknowns. Now we can
write our PDE in terms of linear algabra objects:

𝑀�̄�𝑡 + 𝑐𝑇 �̄�− 𝜇𝑆�̄� = 0

which we modify to be in the format is expected by the temporal solvers:

𝑀�̄�𝑡 = 𝐾�̄�

Parameters
• x (array_like(float)) – Global coordinates of all degrees of freedom.

• connect (array_like(int), shape((num_ele, dofe/ele))) – Element to degree of
freedom connectivety map.

• c (float) – Advective constant.

• mu (float) – Diffusive constant.

• num_q (int) – Number of Gausian quadrature points.

• order (int) – Order of the polynomial used by our element.

Returns
• M (matrix, (sparse csr format)) – The mass matrix.

• K (matrix, (sparse csr format)) – The combination of stiffness and transport matrix matrix
scaled with the approprate constants 𝐾 = 𝜇𝑆 − 𝑐𝑇 .

• b (vector, (dense array)) – The right hand side, because we consider a homogeneous PDE
with diriclet conditions it is a zero vector.
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pde.diffusive(x, connect, mu, num_q, order)
Time derivative of the PDE for diffusion problems.

𝑢𝑡 − 𝜇𝑢𝑥𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

Which, is converted into a weak form through:∫︁
Ω

(�̃�𝑡 − 𝜇�̃�𝑥𝑥)𝜑𝑖(𝑥)𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

Where �̃� is our approximation:

�̃�(𝑥) =

𝑁∑︁
𝑛=1

�̄�𝑛𝜑𝑛(𝑥)

in which �̄�𝑛 are the unknowns and 𝜑𝑛(𝑥) are the basisfunctions of FE approximation space 𝑉ℎ. Substituting this
approximation leads to:∫︁

Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥) − 𝜇𝜕𝑥𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

Which we split into different integrals:∫︁
Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 −
∫︁
Ω

(𝜇𝜕𝑥𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

For the first integral we notice that the basis functions are constant through time, only the degrees of freedom �̄�𝑗

vary through time. Similarly these degrees of freedom does not affect the integral over space
∫︀
Ω
𝑑𝑉 . Thus we

can write: ∫︁
Ω

�̃�𝑡𝑑𝑉 =

∫︁
Ω

(𝜕𝑡

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

=

𝑁∑︁
𝑗=1

𝜕𝑡�̄�𝑗

∫︁
Ω

𝜑𝑗(𝑥)𝜑𝑖(𝑥)𝑑𝑉

⇒ 𝑀�̄�

where 𝑀 is the mass matrix which combines the integral for all different basis functions. For the second term
we apply integration by parts, while assuming that Neumann boundary conditions:∫︁

Ω

�̃�𝑥𝑥𝑑𝑉 =

∫︁
Ω

(𝜕𝑥𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜑𝑖(𝑥)𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

= −
∫︁
Ω

(𝜕𝑥

𝑁∑︁
𝑗=1

�̄�𝑗𝜑𝑗(𝑥))𝜕𝑥𝜑𝑖(𝑥)𝑑𝑉

=

𝑁∑︁
𝑗=1

�̄�𝑗

∫︁
Ω

−𝜕𝑥𝜑𝑗(𝑥)𝜕𝑥𝜑𝑖(𝑥)𝑑𝑉

⇒ 𝑆�̄�

where 𝑆 is the stiffness matrix, which can be computed independently from the actual unknowns. Now we can
write our PDE in terms of linear algabra objects:

𝑀�̄�𝑡 − 𝜇𝑆�̄� = 0

which we modify to be in the format is expected by the temporal solvers:

𝑀�̄�𝑡 = 𝐾�̄�
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Parameters
• x (array_like(float)) – Global coordinates of all degrees of freedom.

• connect (array_like(int), shape((num_ele, dofe/ele))) – Element to degree of
freedom connectivety map.

• mu (float) – Diffusive constant.

• num_q (int) – Number of Gausian quadrature points.

• order (int) – Order of the polynomial used by our element.

Returns
• M (matrix, (sparse csr format)) – The mass matrix.

• K (matrix, (sparse csr format)) – The stiffeness matrix scaled with the diffusivity constant
𝐾 = 𝜇𝑆.

• b (vector, (dense array)) – The right hand side, because we consider a homogeneous PDE
with diriclet conditions it is a zero vector.

pde.projection(mesh, fun)
Projecting a 1D function 𝑓(𝑥) on a finite element basis.

Lets create our approximation function,

𝑓ℎ(𝑥) =

𝑁∑︁
𝑛=0

�̄�𝑛𝜑𝑛(𝑥)

as a weighted summation of the basisfunctions of approximation. Where 𝑝ℎ𝑖𝑛 are the basisfunctions of our FE
space 𝑉ℎ. The unknows here are the weights �̄�𝑛, these we call degrees of freedom. To find these DOFs we
formulate a weak form: ∫︁

Ω

(𝑓ℎ(𝑥) − 𝑓(𝑥))𝜑𝑖(𝑥) 𝑑𝑉 = 0 ∀ 𝜑𝑖 ∈ 𝑉ℎ

in which we substitute our approximation function and separate the knowns from the unknowns. We find:∫︁
Ω

𝜑𝑖(𝑥)

𝑁∑︁
𝑗=0

�̄�𝑗𝜑𝑗(𝑥) 𝑑𝑉 =

∫︁
Ω

𝜑𝑖(𝑥)𝑓(𝑥) 𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

As the weights �̄�𝑛 are independent of location, we can take them out of the integral:
𝑁∑︁
𝑗=0

�̄�𝑗

∫︁
Ω

𝜑𝑖(𝑥)𝜑𝑗(𝑥) 𝑑𝑉 =

∫︁
Ω

𝜑𝑖(𝑥)𝑓(𝑥) 𝑑𝑉 ∀ 𝜑𝑖 ∈ 𝑉ℎ

Which can be rewritten as a system of linear equations, which is:

𝑀 �̄� = 𝑏

Where 𝑀 is a matrix and �̄� and 𝑏 are vectors.

Parameters
• mesh (Mesh) – The mesh object which specifies all discretization.

• fun (callable) – Function that acts as our right hand side (nonhomogeneous term).

Returns
• M (matrix, (sparse csr format)) – The mass matrix.

• b (vector, (dense array)) – The right hand side, caused by the non-homogeneous behavior.
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1.6 FEM Kernel

The main FEM loop.

This main FEM loop will assample the differenc matrices that are required in a FEM solver. It takes the following steps:

1. Loop over all elements.

2. Compute the element based integrals.
1. calculate the quantities in the reference element.

2. integrate using Quadrature rules and include the mapping from reference to global axis system.

3. Assamble these element based contributions into a global operator.
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fem.element_mass(phi_xq, wq_detJ)
Compute the elmement mass matrix.

This matrix is defined as:

𝑀 =

∫︁
Ω

𝜑𝑗(𝑥) 𝜑𝑖(𝑥) 𝑑𝑉 ∀ 𝜑𝑖, 𝜑𝑗 ∈ 𝑉ℎ

=

𝑁∑︁
𝑒=0

∫︁
Ω𝑒

𝜑𝑗(𝑥) 𝜑𝑖(𝑥) 𝑑𝑉 ∀ 𝜑𝑖, 𝜑𝑗 ∈ 𝑉 𝑒
ℎ

=

𝑁∑︁
𝑒=0

𝑀𝑒

but here we only compute the portion contributed by our current element. Hence we only need to consider the
trial functions within each elements. when integrated in reference element coordinates, 𝜉 this is:

𝑀 =

∫︁ 1

0

𝜑𝑗(𝜉)𝜑𝑖(𝜉)𝑑𝑒𝑡(𝐽)𝑑𝑉

To evaluate these integras Gaussian quadrature is used such that thi integal becomes:

𝑀 =

𝑁𝑞∑︁
𝑞=0

𝜑𝑗(𝜉𝑞)𝜑𝑖(𝜉𝑞)𝑑𝑒𝑡(𝐽)𝑤𝑞

Parameters
• phi_xq (array_like(float), shape((dofe, num_q))) – For each shape function the

value at the quadrature points.

• wq_detJ (array_like(float), shape((dofe, num_q))) – Integration weight includ-
ing the mapping from local to global coordinates.

Returns me – Element mass matrix.

Return type array_like(float), shape((dofe, dofe))

fem.element_rhs(phi_xq, wq_detJ, f_xq)
Compute the elmement right hand side vector.

Parameters
• phi_xq (array_like(float), shape((dofs, num_q))) – For each shape function the

value at the quadrature points.
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• f_xq (array_like(float), shape(num_q)) – The value of the right hand side equation
evaluated at the quadrature points.

• wq_detJ (array_like(float), shape((dofs, num_q))) – Integration weight includ-
ing the mapping from local to global coordinates.

Returns fe – Element right hand side in our system of equations.

Return type array_like(float), shape(dofe)

fem.element_stiffness(invJ_dphi_xq, wq_detJ)
Compute the elmement stiffness matrix.

This matrix is defined as:

𝑆 =

∫︁
Ω

−𝜕𝑥𝜑𝑗(𝑥) 𝜕𝑥𝜑𝑖(𝑥) 𝑑𝑉 ∀ 𝜑𝑖, 𝜑𝑗 ∈ 𝑉ℎ

=

𝑁∑︁
𝑒=0

∫︁
Ω𝑒

−𝜕𝑥𝜑𝑗(𝑥) 𝜕𝑥𝜑𝑖(𝑥) 𝑑𝑉 ∀ 𝜑𝑖, 𝜑𝑗 ∈ 𝑉 𝑒
ℎ

=

𝑁∑︁
𝑒=0

𝑆𝑒

but here we only compute the portion contributed by our current element. Hence we only need to consider the
trial functions within each elements. When integrated in reference element coordinates, 𝜉 this is:

𝑆𝑒 =

∫︁ 1

0

𝐽−1 𝜕𝜉𝜑𝑗(𝜉) 𝐽−1 𝜕𝜉𝜑𝑖(𝜉) 𝑑𝑒𝑡(𝐽)𝑑𝑉

To evaluate these integras Gaussian quadrature is used such that thi integal becomes:

𝑆𝑒 =

𝑁𝑞∑︁
𝑞=0

𝐽−1 𝜕𝜉𝜑𝑗(𝜉𝑞) 𝐽−1 𝜕𝜉𝜑𝑖(𝜉𝑞) 𝑑𝑒𝑡(𝐽)𝑤𝑞

Parameters
• invJ_dphi_xq (array_like(float), shape((dofs, num_q))) – For each shape

function its derivative value at the quadrature points times the inverse Jacobian.

• wq_detJ (array_like(float), shape((dofe, num_q))) – Integration weight includ-
ing the mapping from local to global coordinates.

Returns Se – Element mass matrix.

Return type array_like(float), shape((dofe, dofe))

fem.element_transport(phi_xq, invJ_dphi_xq, wq_detJ)
Compute the elmement transport matrix.

This matrix is defined as:

𝑇 =

∫︁
Ω

𝜕𝑥𝜑𝑗(𝑥) 𝜑𝑖(𝑥) 𝑑𝑉 ∀ 𝜑𝑖, 𝜑𝑗 ∈ 𝑉ℎ

=

𝑁∑︁
𝑒=0

∫︁
Ω𝑒

𝜕𝑥𝜑𝑗(𝑥) 𝜑𝑖(𝑥) 𝑑𝑉 ∀ 𝜑𝑖, 𝜑𝑗 ∈ 𝑉 𝑒
ℎ

=

𝑁∑︁
𝑒=0

𝑇𝑒

32 Chapter 1. AMCS 394E: FEM



AMCS 394E: FEM, Release 0.1.1

but here we only compute the portion contributed by our current element. Hence we only need to consider the
trial functions within each elements. when integrated in reference element coordinates, 𝜉 this is:

𝑇𝑒 =

∫︁ 1

0

𝐽−1 𝜕𝜉𝜑𝑗(𝜉) 𝜑𝑖(𝜉) 𝑑𝑒𝑡(𝐽)𝑑𝑉

To evaluate these integras Gaussian quadrature is used such that thi integal becomes:

𝑇𝑒 =

𝑁𝑞∑︁
𝑞=0

𝐽−1 𝜕𝜉𝜑𝑗(𝜉𝑞) 𝜑𝑖(𝜉𝑞) 𝑑𝑒𝑡(𝐽)𝑤𝑞

Parameters
• phi_xq (array_like(float), shape((dofe, num_q))) – For each shape function the

value at the quadrature points.

• invJ_dphi_xq (array_like(float), shape((dofs, num_q))) – For each shape
function its derivative value at the quadrature points times the inverse Jacobian.

• wq_detJ (array_like(float), shape((dofe, num_q))) – Integration weight includ-
ing the mapping from local to global coordinates.

Returns Te – Element mass matrix.

Return type array_like(float), shape((dofe, dofe))

fem.interpolate(mesh, u, x_inter)
Obtain the field 𝑢(𝑥) any points x_inter following the FE interpolation.

Parameters
• mesh (Mesh) – The mesh class specifying all discretization.

• u (array_like(float), shape(dofs)) – The field u at the degrees of freedom.

• x_inter (array_like(float)) – The location where we want to obtain our interpolated
field.

Returns The field u at the interpolation points x_inter.

Return type array_like(float)

fem.kernel1d(mesh, rhs=None, mass=False, transport=False, stiffness=False)
Create the global FEM system by looping over the elements.

Parameters
• mesh (Mesh) – The mesh class specifying all discretization.

• rhs (callable) – Function that acts as our right hand side (nonhomogeneous term), set
equal to None if the rhs is zero valued.

• mass (bool, optional) – Return a mass matrix. Default is False.

• transport (bool, optional) – Return the transport matrix. Default is False.

• stiffness (bool, optional) – Return the stiffness matrix. Default is False.

Returns
• f (array_like(float), shape(dofe)) – Global right hand side in our system of equations. Only

when rhs != None, None otherwise.

• M (COO (value, (row, column))) – Global mass matrix, ready to be converted to COO.
Repeating indices do exist. Only mass == True, None otherwise.
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• T (COO (value, (row, column))) – Global transport matrix, ready to be converted to COO.
Repeating indices do exist. Only ‘transport == True`, None otherwise.

• S (COO (value, (row, column))) – Global stiffness matrix, ready to be converted to COO.
Repeating indices do exist. Only ‘stiffness == True`, None otherwise.

1.7 Elements and Meshes

Discretization objects, containing both the meshing and the solution space approximation.

That is inside this object is both the ℎ and 𝑝 discretization. These are in this code orginized together as no local 𝑝
refinement is expeced. There is a base class, Mesh, specifying the interface to the main kernel and solver, and there are
the following interited classes specifying:

1. Mesh1D for a 1D mesh of different approximation orders 𝑝.

2. Mesh2Dtri for a 2D mesh of triangles.

3. Mesh2Dqua for a 2D mesh of quadralatirals.

And although these have the name ‘mesh’ they do describe the elements as well.
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1.7.1 Base Mesh

class element.Mesh
Specify a base mesh object, and it’s behaviour.

This base class is not an actual usefull mesh but provides the basics outline that should be in all other mesh
classes. All other meshes should be childeren from this base class. But inheritance works badly with the just in
time compilation of numba. Hence all function have to be redefined in the child classes, while the class requires
the @nb.jitclass(spec) decorator.

num_ele
Number of elements in the entire mesh.

Type int

num_dofe
Number of degrees of freedom per element.

Type int

num_dofs
Number of degrees of freedom in the problem, this property depends on the element type and the mesh.

Type int

num_q
Number of quadrature point in integration approximations.

Type int

nodes
For each node in each element the coordinates.

Type array_like(float), shape(n+1, order+1)

connectivity
Elements to node connectivity array.
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Type array_like(int), shape(n+1, order+1)

dshape(xi)
Shape functions derivatives at locations 𝜉 in element coordinates system.

Parameters xi (array_like(float)) – Locations 𝜉 where the shape functions are evaluated.

Returns dphi_xq – Shape functions derivatives 𝜑𝑖 at locations 𝜉.

Return type array_like(float)

get_element(ele, rhs=None)
Get the element properties of element ele.

Parameters
• ele (int) – Number of the element of which the properties should be obtained.

• rhs (callable(float)) – The righthandside function of the pde in terms of global co-
ordinates.

Returns
• dofe (array_like(int), shape(num_dofe)) – The degrees of freedom that belong to this ele-

ment.

• phi_xq (array_like(float), shape((dofs, num_q))) – For each shape function the value at the
quadrature points.

• invJ_dphi_xq (array_like(float), shape((dofs, num_q))) – For each shape function its
derivative value at the quadrature points times the inverse Jacobian.

• f_xq (array_like(float), shape(num_q)) – The value of the right hand side equation evalu-
ated at the quadrature points.

• wq_detJ (array_like(float), shape((dofs, num_q))) – For the local determinant times
quadrature weight at each of the quadrature points.

jacobian(ele, xi)
The jacobian and mapping for the local to global coordinates system (𝜉 to 𝑥).

Parameters
• ele (int) – Element for which the jacobian has to be calculated.

• xi (array_like(float)) – Location where the jacobians should be measured.

Returns
• jac (array_like(float)) – The Jacobian at 𝜉.

• invJ (array_like(float)) – The inverse Jacobian at 𝜉.

• detJ (array_like(float)) – The derivative of the Jacobian at 𝜉.

shape(xi)
Shape functions at locations 𝜉 in element coordinates system.

Parameters xi (array_like(float)) – Locations 𝜉 where the shape functions are evaluated.

Returns phi_xq – Shape functions 𝜑𝑖 at locations 𝜉.

Return type array_like(float)

x_to_xi(ele, x)
Converting global into local coordinates 𝑥 → 𝜉.

Parameters
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• ele (int) – Element in which the transformation has to take place.

• x (array_like(float)) – Global coordinates, these must be within the element.

Returns xi – The local, element, coordinates.

Return type array_like(float)

xi_to_x(ele, xi)
Converting local coordinates into global ones 𝜉 → 𝑥.

Parameters
• ele (int) – Element in which the transformation has to take place.

• xi (array_like(float)) – Local coordinates within the element.

Returns x – The global coordinates.

Return type array_like(float)

1.7.2 Implemented Meshes

class element.Mesh1D(x_start, x_end, num_ele, order, num_q, periodic=False)
Specify a 1D mesh object, and it’s behaviour.

This is a 1D mesh object with Lagransian basis functions.

Parameters
• x_start (float) – Start coordinate of the domain.

• x_end (float) – End coordinate of the domain.

• num_ele (int) – Number of elements in the mesh.

• order (int) – Polynomial order of the Lagransian basis functions.

• num_q (int) – Number of quadrature points per element.

• periodic (bool, optional) – Whether the domain is periodic, default is False.

num_ele
Number of elements in the entire mesh.

Type int

order
Order of the polynomaial approximation.

Type int

num_dofe
Number of degrees of freedom per element.

Type int

num_dofs
Number of degrees of freedom in the problem, this property depends on the element type and the mesh.

Type int

num_q
Number of quadrature point in integration approximations.

Type int
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nodes
For each node in each element the coordinates.

Type array_like(float), shape(n+1, order+1)

connectivity
Elements to node connectivity array.

Type array_like(int), shape(n+1, order+1)

get_element(ele, rhs=None)
Get the element properties of element ele.

Parameters
• ele (int) – Number of the element of which the properties should be obtained.

• rhs (callable(float), optional) – The righthandside function of the pde in terms
of global coordinates.

Returns
• dofe (array_like(int), shape(num_dofe)) – The degrees of freedom that belong to this ele-

ment.

• phi_xq (array_like(float), shape((dofs, num_q))) – For each shape function the value at the
quadrature points.

• invJ_dphi_xq (array_like(float), shape((dofs, num_q))) – For each shape function its
derivative value at the quadrature points times the inverse Jacobian.

• f_xq (array_like(float), shape(num_q)) – The value of the right hand side equation evalu-
ated at the quadrature points.

• wq_detJ (array_like(float), shape((dofs, num_q))) – For the local determinant times
quadrature weight at each of the quadrature points.

x_to_xi(ele, x)
Converting local coordinates into global ones 𝑥 → 𝜉.

Parameters
• ele (int) – Element in which the transformation has to take place.

• x (array_like(float)) – Global coordinates, these must be within the element.

Returns xi – The local, element, coordinates.

Return type array_like(float)

xi_to_x(ele, xi)
Converting local coordinates into global ones 𝜉 → 𝑥.

Parameters
• ele (int) – Element in which the transformation has to take place.

• xi (array_like(float)) – Local coordinates within the element.

Returns x – The global coordinates.

Return type array_like(float)

jacobian(ele)
The jacobian and mapping for the local to global coordinates system (𝜉 to 𝑥).
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Because the jacobian is a constant for 1D meshes, the objectes that are returned are constant floats instead
of arrays.

Parameters ele (int) – Element for which the jacobian has to be calculated.

Returns
• jac (float) – The Jacobian at 𝜉.

• invJ (float) – The inverse Jacobian at 𝜉.

• detJ (float) – The derivative of the Jacobian at 𝜉.

shape(xi)
Shape functions at locations 𝜉 in element coordinates system.

Parameters xi (array_like(float)) – Locations 𝜉 where the shape functions are evaluated.

Returns phi_xq – Shape functions 𝜑𝑖 at locations 𝜉.

Return type array_like(float)

dshape(xi)
Shape functions derivatives at locations 𝜉 in element coordinates system.

Parameters xi (array_like(float)) – Locations 𝜉 where the shape functions are evaluated.

Returns dphi_xq – Shape functions derivatives 𝜑𝑖 at locations 𝜉.

Return type array_like(float)

1.8 Solvers and Time Integration

Various implementations of the method of lines to progress through time. The goal is to implement the code in python
and not rely on existing solvers.
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solvers.backwardEuler(pde, u, dt, t_end)
Itterate a through time with the backward Eurler method.

Lets assume that, through any type of discretization, the time derivative was obtained. This time derivative can
be represented through linear algabra as:

𝑀 𝑢𝑡 = 𝐾 𝑢 + 𝑏 that is 𝑢𝑡 = 𝑀−1(𝐾 𝑢 + 𝑏)

where 𝑀 is the mass matrix, 𝐾 the siffness and transport matrix and vector 𝑏 the right hand side. these are
obtained from approximations of the spatial derivatives defined by the functien provided to func

The backward Euler method predicts the field of our function based upon information of the previous timestep
only. Imagine that we are at timestep 𝑛 and want to predict our field at timestep 𝑢(𝑛+1). Now a backward finite
difference approximation used the time derivative of the next timestep, wich is not yet known:

𝑢
(𝑛+1)
𝑡 =

−𝑢(𝑛) + 𝑢(𝑛+1)

𝑑𝑡

That is we can predict our field in the future timestep as:

𝑢(𝑛+1) = 𝑢(𝑛) + 𝑑𝑡 𝑢
(𝑛+1)
𝑡

in which we substitute the linear algabra representation of our PD.

𝑢(𝑛+1) = 𝑢(𝑛) + 𝑑𝑡𝑀−1(𝐾𝑢𝑛+1 + 𝑏)
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It is important to notic that there is a term with an unknown, as that is at time step :math:`n+1’ on both sides of
the equation. Now we rewrite it into a system of equations where we find all unknowns on the left hand side and
all knownn on the right hand side.

(𝑀 − 𝑑𝑡𝐾)𝑢(𝑛+1) = 𝑀 𝑢(𝑛) + 𝑑𝑡𝑏

This is a system of equations which can be solved.

Parameters
• pde (tuple) – The linear algabra objects of the pde 𝑀 𝑢𝑡 = 𝐾 𝑢 + 𝑏.

• u (array_like) – The field at the start 𝑢(𝑡 = 0).

• dt (float) – The size of the time step.

• t_end (float) – Time at termination.

Returns The function for all time steps.

Return type array_like

solvers.forwardEuler(pde, u, dt, t_end)
Itterate a through time with the forward Eurler method.

Lets assume that, through any type of discretization, the time derivative was obtained. This time derivative can
be represented through linear algabra as:

𝑀 𝑢𝑡 = 𝐾 𝑢 + 𝑏 that is 𝑢𝑡 = 𝑀−1(𝐾𝑢 + 𝑏)

where 𝑀 is the mass matrix, 𝐾 the siffness and transport matrix and vector 𝑏 the right hand side. these are
obtained from approximations of the spatial derivatives defined by the functien provided to func.

The backward Euler method predicts the field of our function based upon information of the previous timestep
only. Imagine that we are at timestep 𝑛 and want to predict our field at timestep 𝑢(𝑛+1). Now a forward finite
difference approximation is used:

𝑢
(𝑛)
𝑡 =

−𝑢(𝑛) + 𝑢(𝑛+1)

𝑑𝑡

That is we can predict our field in the future timestep as:

𝑢(𝑛+1) = 𝑢(𝑛) + 𝑑𝑡 𝑢
(𝑛)
𝑡

Now from our linear algabra implementation we substitute 𝑢𝑡

𝑢(𝑛+1) = 𝑢(𝑛) + 𝑑𝑡𝑀−1(𝐾𝑢(𝑛) + 𝑏)

most important of all is to see that everything on the right hand side is exactly known. Thus the updated field can
be calculated directly. However For this purpouse we would have to invert the mass matrix. If the mass matrix is
the identity matrix this is simple, but in generally this is not the case. As we don’t want to invert large matrices,
we multiply all terms by 𝑀 .

𝑀𝑢(𝑛+1) = 𝑀𝑢(𝑛) + 𝑑𝑡 (𝐾𝑢(𝑛) + 𝑏)

Which is a system of equations as everything on the right hand side is known and can be calculated directly.
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Notes

This code will recognize if 𝑀 is the identity matrix and, in that case it will solve the problem directly, avoiding
the need to solve a sytem of equations.

Parameters
• pde (tuple) – The linear algabra objects of the pde 𝑀 𝑢𝑡 = 𝐾 𝑢 + 𝑏.

• u (array_like) – The field at the start 𝑢(𝑡 = 0).

• dt (float) – The size of the step.

• t_end (float) – Time at termination.

Returns The function for all time steps.

Return type array_like

solvers.solve(K, b)
Solve a time independed problem.

Parameters
• func (callable) – The linear algabra problem that we want to solve 𝐾 𝑢 = 𝑏.

• args (tuple, optional) – The parameters into the PDE approximation. Defealts to an
empty tuple.

Returns The vector containing 𝑢.

Return type array_like

1.9 Helper Scripts

Minor helper functions for FEM problems.
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helper.E1(fun, fun_h, x)
Calculate the 𝐸1 error.

𝐸1 :=

∫︁
Ω

|𝑓(𝑥) − 𝑓ℎ(𝑥)|𝑑𝑥

Parameters
• fun (array_like) – The solution of the exact equation at location 𝑥.

• fun_h (array_like) – The solution of the approximation equation at location 𝑥.

• x (array_like) – The locations where the function is analyzed.

Returns Error of the approximation.

Return type float

helper.E2(fun, fun_h, x)
Calculate the 𝐸2 error.

𝐸2 :=

√︃∫︁
Ω

(︀
𝑓(𝑥) − 𝑓ℎ(𝑥)

)︀2
𝑑𝑥

Parameters
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• fun (array_like) – The solution of the exact equation at location 𝑥.

• fun_h (array_like) – The solution of the approximation equation at location 𝑥.

• x (array_like) – The locations where the function is analyzed.

Returns Error of the approximation.

Return type float

helper.gauss(num)
Gaussian integration points and weights for num sample points.

Computes the sample points and weights for Gauss-Legendre quadrature. These sample points and weights will
correctly integrate polynomials of degree 2 · 𝑛𝑢𝑚 − 1 or less over the interval [0, 1] with the weight function
𝑓(𝑥) = 1.

Parameters num (int) – Number of sample points and weights. It must be 1 <= num <= 5.

Returns
• xi (array_like(float)) – 1D array containing the sample points.

• w (array_like(float)) – 1D array containing the weights at the sample points.

helper.quadtri(num)
Symetric quadrature points and weights for num sample points in a triangle.

Computes the sample points and weights through the Dunavant unnit trianglue rule1. These sample points and
weights will correctly integrate polynomials of:

Table 1.4: : Quadrature with num points results in exact integrals for
polynomial of order 𝑝.

num 1 3 4 7
𝑝 1 2 3 4

Parameters num (int) – Number of sample points and weights. It must be 1, 3, 4, or 7.

Returns
• xi (array_like(float)) – 1D array containing the sample points in local coordinates.

• w (array_like(float)) – 1D array containing the weights at the sample points.

References

1.10 Finite Differences

Finite difference example problems.

• Diffusive 1D

𝑢𝑡 − 𝜇𝑢𝑥𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

• Advective 1D
1 Dunavant, D.A. (1985), High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Meth. Engng., 21:

1129-1148. DOI:10.1002/nme.1620210612
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𝑢𝑡 + 𝑐𝑢𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

• Diffusive-Advective 1D

𝑢𝑡 + 𝑐𝑢𝑥 − 𝜇𝑢𝑥𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

• Poisson in 1D

−𝑐𝑢𝑥𝑥 = 𝑓(𝑥) ∀𝑥 ∈ Ω = [0, 𝐿]

Bram Lagerweij COHMAS Mechanical Engineering KAUST 2021

finitedifference.Dx(dof, dx, bc='periodic')
Return the central differences matrix for the first derivative. That is the matrix𝐷𝑥 represents the central difference
approximation of 𝜕𝑥 in 1D axis systems.

Parameters
• dof (int) – Number of spacial degrees of freedom.

• dx (float) – Spacial step size.

• bc (str, optional) – The type of boundary condition to be used. The default is ‘periodic’.

Raises NotImplementedError – Is raised when the requested boundary condition is not imple-
mented.

Returns The central difference approximation of the first derivative.

Return type matrix (sparse csr format)

Notes

The following boundary conditions are possible:

• ‘periodic’ (default) that the first and last dofs are representing the same point. As a result the derivative of
the first point depends on the second last point and the derivative of the last point will depend on the second
point as well.

• ‘none’ means that the row of the first and last degree of freedom are left empty. This will result in a singular
matrix, thus extra constraints will have to be defined before solving a system with such a matrix.

finitedifference.Dxx(dof, dx, bc='periodic')
Return the central differences matrix for the second derivative. That is the matrix 𝐷𝑥𝑥 represents the central
difference approximation of 𝜕𝑥𝑥 in 1D axis systems.

Parameters
• dof (int) – Number of spacial degrees of freedom.

• dx (float) – Spacial step size.

• bc (str, optional) – The type of boundary condition to be used. The default is ‘periodic’.

Raises NotImplementedError – Is raised when the requested boundary condition is not imple-
mented.
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Returns The central difference approximation of the first derivative.

Return type matrix (sparse csr format)

Notes

The following boundary conditions are possible:

• ‘periodic’ (defeat) that the first and last dofs are representing the same point. As a result the derivative of
the first point depends on the second last point and the derivative of the last point will depend on the second
point as well.

• ‘none’ means that the row of the first and last degree of freedom are left empty. This will result in a singular
matrix, thus extra constraints will have to be defined before solving a system with such a matrix.

finitedifference.advective(dof, dx, c)
Time derivative of the PDE for advective diffusive problems.

𝑢𝑡 + 𝑐𝑢𝑥 = 0 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

Thus this returns:

𝑢𝑡 = −𝑐𝑢𝑥

Because we use finite difference based matrix products we can convert this into a matrix vector product, where
𝐷𝑥 is the central difference approximation of 𝜕𝑥:

𝑢𝑡 = −𝑐𝐷𝑥𝑢 = 𝐾𝑢

This function calculates the matrix 𝐾. Because it should be compatible with general, non-homogeneous formu-
lation, a part that is independent of 𝑢 is also included.

Parameters
• dof (int) – Number of degrees of freedom.

• dx (float) – Step size in the of spatial discretization.

• c (float) – The advective coefficient.

Returns
• M (matrix (sparse csr format)) – The mass matrix, which will equal the identity matrix in

finite differenc problems.

• K (matrix (sparse csr format)) – The time derivative part of the pde obtained from the spatial
part.

• b (vector (dense array)) – The remaining term, in this homogeneous case it is a zero array.

finitedifference.advectivediffusive(dof, dx, mu, c)
Time derivative of the PDE for advective diffusive problems.

𝑢𝑡 + 𝑐𝑢𝑥 = 𝜇𝑢𝑥𝑥 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

Thus this returns:

𝑢𝑡 = −𝑐𝑢𝑥 + 𝜇𝑢𝑥𝑥

Because we use finite difference based matrix products we can convert this into a matrix vector product, where
𝐷𝑥 is the central difference approximation of 𝜕𝑥 and similarly 𝐷𝑥𝑥 the central difference approximation of 𝜕𝑥𝑥:

𝑢𝑡 = −𝑐𝐷𝑥𝑢 + 𝜇𝐷𝑥𝑥𝑢 = (−𝑐𝐷𝑥 + 𝜇𝐷𝑥𝑥)𝑢 = 𝐾𝑢
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This function calculates the matrix 𝐾. Because it should be compatible with general, non-homogeneous formu-
lation, a part that is independent of 𝑢 is also included.

Parameters
• dof (int) – Number of degrees of freedom.

• dx (float) – Step size in the of spatial discretization.

• mu (float) – The diffusive coefficient.

• c (float) – The advective coefficient.

Returns
• M (matrix (sparse csr format)) – The mass matrix, which will equal the identity matrix in

finite differenc problems.

• K (matrix (sparse csr format)) – The time derivative part of the pde obtained from the spatial
part.

• b (vector (dense array)) – The remaining term, in this homogeneous case it is a zero array.

finitedifference.diffusive(dof, dx, mu)
Time derivative of the PDE for advective diffusive problems.

𝑢𝑡 = 𝜇𝑢𝑥𝑥 ∀𝑥 ∈ Ω = [0, 𝐿] & 𝑡 > 0

Thus this returns:

𝑢𝑡 = 𝜇𝑢𝑥𝑥

Because we use finite difference based matrix products we can convert this into a matrix vector product, where
𝐷𝑥𝑥 is the central difference approximation of 𝜕𝑥𝑥:

𝑢𝑡 = 𝜇𝐷𝑥𝑥𝑢 = 𝐾𝑢

This function calculates the matrix 𝐾. Because it should be compatible with general, non-homogeneous formu-
lation, a part that is independent of 𝑢 is also included.

Parameters
• dof (int) – Number of degrees of freedom.

• dx (float) – Step size in the of spatial discretization.

• mu (float) – The diffusive coefficient.

Returns
• M (matrix (sparse csr format)) – The mass matrix, which will equal the identity matrix in

finite differenc problems.

• K (matrix (sparse csr format)) – The time derivative part of the pde obtained from the spatial
part.

• b (vector (dense array)) – The remaining term, in this homogeneous case it is a zero array.

finitedifference.poisson(dof, dx, f, c=1)
Problem formulation of a Poisson equation.

−𝑐𝑢𝑥𝑥 = 𝑓(𝑥) ∀𝑥 ∈ Ω = [0, 𝐿]
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Because we use finite difference based matrix products we can convert this into a matrix vector product, where
𝐷𝑥𝑥 the is the central difference approximation of 𝜕𝑥𝑥:

𝐷𝑥𝑥𝑢 = 𝐾𝑢 = 𝑓/𝑐

This function calculates the matrix 𝐾 and the forcing vector 𝑓 . The matrix is however singular as no boundary
conditions are specified.

Parameters
• dof (int) – Number of degrees of freedom.

• dx (float) – Step size in the of spatial discretization.

• f (callable) – A function to calculate the forcing term for any location 𝑥.

• c (float, optional) – A scalar multiplying the derivative.

Returns
• K (matrix (sparse csr format)) – The stiffness matrix.

• b (vector (dense array)) – The right hand side, caused by the non-homogeneous behavior.

1.11 Mozilla Public License Version 2.0

1.11.1 1. Definitions

1.1. “Contributor” means each individual or legal entity that creates, contributes to the creation of, or owns Covered
Software.

1.2. “Contributor Version” means the combination of the Contributions of others (if any) used by a Contributor and
that particular Contributor’s Contribution.

1.3. “Contribution” means Covered Software of a particular Contributor.

1.4. “Covered Software” means Source Code Form to which the initial Contributor has attached the notice in Exhibit
A, the Executable Form of such Source Code Form, and Modifications of such Source Code Form, in each case
including portions thereof.

1.5. “Incompatible With Secondary Licenses” means

(a) that the initial Contributor has attached the notice described in Exhibit B to the Covered Software; or

(b) that the Covered Software was made available under the terms of version 1.1 or earlier of the License, but
not also under the terms of a Secondary License.

1.6. “Executable Form” means any form of the work other than Source Code Form.

1.7. “Larger Work” means a work that combines Covered Software with other material, in a separate file or files, that
is not Covered Software.

1.8. “License” means this document.

1.9. “Licensable” means having the right to grant, to the maximum extent possible, whether at the time of the initial
grant or subsequently, any and all of the rights conveyed by this License.

1.10. “Modifications” means any of the following:

(a) any file in Source Code Form that results from an addition to, deletion from, or modification of the contents
of Covered Software; or

(b) any new file in Source Code Form that contains any Covered Software.
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1.11. “Patent Claims” of a Contributor means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that would be infringed, but for the grant
of the License, by the making, using, selling, offering for sale, having made, import, or transfer of either its
Contributions or its Contributor Version.

1.12. “Secondary License” means either the GNU General Public License, Version 2.0, the GNU Lesser General
Public License, Version 2.1, the GNU Affero General Public License, Version 3.0, or any later versions of those
licenses.

1.13. “Source Code Form” means the form of the work preferred for making modifications.

1.14. “You” (or “Your”) means an individual or a legal entity exercising rights under this License. For legal entities,
“You” includes any entity that controls, is controlled by, or is under common control with You. For purposes of
this definition, “control” means (a) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (b) ownership of more than fifty percent (50%) of the outstanding
shares or beneficial ownership of such entity.

1.11.2 2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free, non-exclusive license:

(a) under intellectual property rights (other than patent or trademark) Licensable by such Contributor to use, repro-
duce, make available, modify, display, perform, distribute, and otherwise exploit its Contributions, either on an
unmodified basis, with Modifications, or as part of a Larger Work; and

(b) under Patent Claims of such Contributor to make, use, sell, offer for sale, have made, import, and otherwise
transfer either its Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution become effective for each Contribution on the date
the Contributor first distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under this License. No additional rights or licenses
will be implied from the distribution or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:

(a) for any code that a Contributor has removed from Covered Software; or

(b) for infringements caused by: (i) Your and any other third party’s modifications of Covered Software, or (ii) the
combination of its Contributions with other software (except as part of its Contributor Version); or

(c) under Patent Claims infringed by Covered Software in the absence of its Contributions.

This License does not grant any rights in the trademarks, service marks, or logos of any Contributor (except as may be
necessary to comply with the notice requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to distribute the Covered Software under a subsequent
version of this License (see Section 10.2) or under the terms of a Secondary License (if permitted under the terms of
Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its Contributions are its original creation(s) or it has sufficient
rights to grant the rights to its Contributions conveyed by this License.

2.6. Fair Use
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This License is not intended to limit any rights You have under applicable copyright doctrines of fair use, fair dealing,
or other equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in Section 2.1.

1.11.3 3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any Modifications that You create or to which
You contribute, must be under the terms of this License. You must inform recipients that the Source Code Form of the
Covered Software is governed by the terms of this License, and how they can obtain a copy of this License. You may
not attempt to alter or restrict the recipients’ rights in the Source Code Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

(a) such Covered Software must also be made available in Source Code Form, as described in Section 3.1, and
You must inform recipients of the Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost of distribution to the recipient; and

(b) You may distribute such Executable Form under the terms of this License, or sublicense it under different terms,
provided that the license for the Executable Form does not attempt to limit or alter the recipients’ rights in the
Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice, provided that You also comply with the
requirements of this License for the Covered Software. If the Larger Work is a combination of Covered Software with
a work governed by one or more Secondary Licenses, and the Covered Software is not Incompatible With Secondary
Licenses, this License permits You to additionally distribute such Covered Software under the terms of such Secondary
License(s), so that the recipient of the Larger Work may, at their option, further distribute the Covered Software under
the terms of either this License or such Secondary License(s).

3.4. Notices

You may not remove or alter the substance of any license notices (including copyright notices, patent notices, dis-
claimers of warranty, or limitations of liability) contained within the Source Code Form of the Covered Software,
except that You may alter any license notices to the extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty, support, indemnity or liability obligations to one or more
recipients of Covered Software. However, You may do so only on Your own behalf, and not on behalf of any Contributor.
You must make it absolutely clear that any such warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any liability incurred by such Contributor as a result
of warranty, support, indemnity or liability terms You offer. You may include additional disclaimers of warranty and
limitations of liability specific to any jurisdiction.
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1.11.4 4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this License with respect to some or all of the Covered
Software due to statute, judicial order, or regulation then You must: (a) comply with the terms of this License to the
maximum extent possible; and (b) describe the limitations and the code they affect. Such description must be placed
in a text file included with all distributions of the Covered Software under this License. Except to the extent prohibited
by statute or regulation, such description must be sufficiently detailed for a recipient of ordinary skill to be able to
understand it.

1.11.5 5. Termination

5.1. The rights granted under this License will terminate automatically if You fail to comply with any of its terms.
However, if You become compliant, then the rights granted under this License from a particular Contributor are rein-
stated (a) provisionally, unless and until such Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the non-compliance by some reasonable means prior to 60
days after You have come back into compliance. Moreover, Your grants from a particular Contributor are reinstated
on an ongoing basis if such Contributor notifies You of the non-compliance by some reasonable means, this is the first
time You have received notice of non-compliance with this License from such Contributor, and You become compliant
prior to 30 days after Your receipt of the notice.

5.2. If You initiate litigation against any entity by asserting a patent infringement claim (excluding declaratory judgment
actions, counter-claims, and cross-claims) alleging that a Contributor Version directly or indirectly infringes any patent,
then the rights granted to You by any and all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user license agreements (excluding distributors
and resellers) which have been validly granted by You or Your distributors under this License prior to termination shall
survive termination.

1.11.6 6. Disclaimer of Warranty

Covered Software is provided under this License on an “as is” basis, without warranty of any kind, either expressed, im-
plied, or statutory, including, without limitation, warranties that the Covered Software is free of defects, merchantable,
fit for a particular purpose or non-infringing. The entire risk as to the quality and performance of the Covered Software
is with You. Should any Covered Software prove defective in any respect, You (not any Contributor) assume the cost of
any necessary servicing, repair, or correction. This disclaimer of warranty constitutes an essential part of this License.
No use of any Covered Software is authorized under this License except under this disclaimer.

1.11.7 7. Limitation of Liability

Under no circumstances and under no legal theory, whether tort (including negligence), contract, or otherwise, shall any
Contributor, or anyone who distributes Covered Software as permitted above, be liable to You for any direct, indirect,
special, incidental, or consequential damages of any character including, without limitation, damages for lost profits,
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses,
even if such party shall have been informed of the possibility of such damages. This limitation of liability shall not apply
to liability for death or personal injury resulting from such party’s negligence to the extent applicable law prohibits such
limitation. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so this
exclusion and limitation may not apply to You.
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1.11.8 8. Litigation

Any litigation relating to this License may be brought only in the courts of a jurisdiction where the defendant maintains
its principal place of business and such litigation shall be governed by laws of that jurisdiction, without reference to
its conflict-of-law provisions. Nothing in this Section shall prevent a party’s ability to bring cross-claims or counter-
claims.

1.11.9 9. Miscellaneous

This License represents the complete agreement concerning the subject matter hereof. If any provision of this License
is held to be unenforceable, such provision shall be reformed only to the extent necessary to make it enforceable. Any
law or regulation which provides that the language of a contract shall be construed against the drafter shall not be used
to construe this License against a Contributor.

1.11.10 10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section 10.3, no one other than the license steward
has the right to modify or publish new versions of this License. Each version will be given a distinguishing version
number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version of the License under which You originally
received the Covered Software, or under the terms of any subsequent version published by the license steward.

10.3. Modified Versions

If you create software not governed by this License, and you want to create a new license for such software, you may
create and use a modified version of this License if you rename the license and remove any references to the name of
the license steward (except to note that such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses

If You choose to distribute Source Code Form that is Incompatible With Secondary Licenses under the terms of this
version of the License, the notice described in Exhibit B of this License must be attached.

1.11.11 Exhibit A - Source Code Form License Notice

This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.0. If a copy of the MPL
was not distributed with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular file, then You may include the notice in a location (such
as a LICENSE file in a relevant directory) where a recipient would be likely to look for such a notice.

You may add additional accurate notices of copyright ownership.
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1.11.12 Exhibit B - “Incompatible With Secondary Licenses” Notice

This Source Code Form is “Incompatible With Secondary Licenses”, as defined by the Mozilla Public
License, v. 2.0.

1.12 Indices and Tables

• genindex

• modindex

• search
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N
nodes (element.Mesh attribute), 34
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num_dofs (element.Mesh attribute), 34
num_dofs (element.Mesh1D attribute), 36
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O
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P
pde

module, 25
poisson() (in module finitedifference), 44
projection() (in module pde), 30

Q
quadtri() (in module helper), 41

S
shape() (element.Mesh method), 35
shape() (element.Mesh1D method), 38
solve() (in module solvers), 40
solvers

module, 38

X
x_to_xi() (element.Mesh method), 35
x_to_xi() (element.Mesh1D method), 37
xi_to_x() (element.Mesh method), 36
xi_to_x() (element.Mesh1D method), 37
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